

NHS Foundation Trust

Assessment of cervical length and previous caesarean section scar

PTBC TEAM **Amrita Banerjee** Maria Ivan **Natalie Greenwold Davide Casagrandi Amos Tetteh**

Georgina Fox Deborah Warner Raffaele Napolitano **Anna David**

Full Dilatation Caesarean Section and preterm birth

- Full dilatation caesarean section (FDCS) rates are increasing
 - >15% of emergency CS are performed at full dilatation (McKelvey et al 2010, Vousden et al 2014, Cong et al 2018)
- FDCS is associated with an increased risk of subsequent spontaneous preterm birth (SPTB)
- NHS England Saving Babies' Lives Care Bundle recommends screening

FDCS and risk of subsequent SPTB				
Author	Study Design	Number	Outcome	SPTB risk
Offringa et al, 2022	Retrospective cohort (France)	9182	SPTB < 37 weeks	aOR 2.5 (95% Cl: 1.2–5.1, <i>P</i> = 0.009); 7% vs 3%, FDCS vs vaginal birth
Williams et al, 2020	Retrospective cohort (UK)	16340	SPTB < 37 weeks	aOR 3.29, (95% CI 2.02-5.13, <i>P</i> < 0.001); 4.5% vs 2.3%, FDCS vs vaginal birth
Wang et al, 2020	Retrospective Cohort (Australia)	1299	SPTB < 37 weeks	RR 2.18 (95% CI 1.14–4.19; <i>P</i> = 0.019); 4.3% vs 2.0%, FDCS vs mid cavity forceps
Cong et al, 2018	Retrospective Cohort (Australia)	19099	SPTB < 37 weeks	OR 2.2 (95% CI 1.3–3.8, P = 0.003); 3.8% vs 1.7%, FDCS vs 1 st stage CS
Wood et al, 2017	Retrospective Cohort (Canada)	189021	SPTB <37 and <32 weeks	RR 1.57 (95% CI 1.43– 1.73) and RR of 2.12 (95% CI 1.67- 2.68), FDCS vs SVD
Levine et al, 2015	Retrospective Cohort (USA)	887	SPTB < 37 weeks	OR 5.8 (95%CI 1.08–30.8, P = 0.04), 13.5% vs 2.3% (FDCS vs 1 st stage CS)

Interventions to prevent PTB are less effective

- FDCS associated with 3 fold increased risk of recurrent sPTB compared to vaginal delivery, in spite of intervention.
 - RR 3.06 (95% CI 1.22-7.71, p=0.02).
 - 11/29 women received vaginal cerclage in the FDCS group, 45% (5/11)
 still delivered preterm

 Watson et al 2017

Hypotheses of pathophysiology

- FDCS results in greater incidence of maternal and neonatal morbidity.
 - FDCS has >2 fold risk of intraoperative trauma compared to first stage CS (Allen et al 2005)
 - Uterine extension 24%
 - Damage to the cervix or high vagina (reported incidence of 4.4%)

- Caesarean section in advanced labour is associated with lower scars, scars in the cervix and large scar defects.
- Risk of large defect 9.1% when cervix is closed vs 50% if cervix dilated >8cm

Kamel et al 2020 Osser et al 2010 Zimmer. et al 2004

RCT - Level of Caesarean hysterotomy and the presence of large scar defect

- N=114, emergency CS at cervical dilatation ≥ 5 cm
- TVUS 6–9 months after delivery
- Large scar defects 4/55 (7%) high-incision group vs in 24/59 (41%) low-incision group
- **OR= 8.7** (95% CI, 2.8–27.4); p < 0.001

Aims

- To validate a method in pregnancy to assess FDCS scar position and characteristics relative to the level of the internal cervical os.
- To examine if there is any association between the site and characteristics of the scar and
 - Cervical Length (CL) shortening
 - Preterm Birth (PTB) risk
- To develop multiparameter screening models for prediction of spontaneous preterm birth

Methods

- Prospective cohort study (2017- 2021)
- Singleton pregnant women with previous term FDCS
- Serial TVUS assessment (14-24 weeks gestation)
- Measurements: Cervical length (CL), CS scar distance to internal os and CS niche – length, depth, width
- Prophylactic interventions (cervical cerclage or vaginal progesterone) offered
 - If Cervical Length ≤ 25mm
 - To women with a previous history of SPTB/late miscarriage after FDCS
- Primary outcome:
 - prediction of SPTB <37 weeks
- Secondary outcomes:
 - 。 CL ≤ 25 mm
 - Need for prophylactic intervention

US PROTOCOL

DEFINITIONS

- Caesarean Section Scar hypoechoic (or rarely hyperechoic) discontinuity in the myometrium at the anterior wall of the lower uterine segment or cervix
- Caesarean Section Niche an indentation at the site of the caesarean section (CS) scar with a depth of at least 2mm

NHS Foundation Trust

Measurement of cervical length

- The patient should be in the dorsal lithotomy position with empty bladder
- Advance the transvaginal probe slowly into the vagina looking at the image as the probe advances
- Obtain a sagittal section of the uterus and cervix with good visualisation of the cervical canal
- Avoid excessive pressure on the cervix by the probe. The anterior and posterior lips of the cervix should be of similar diameter.
- Use zoom to enlarge the view of the cervix. The cervix should occupy approximately 75% of the image.
- Identify the internal os, external os, cervical canal and endocervical mucosa.

Measurement of cervical length

Measurement of cervical length

Scan across in the sagittal plane to identify the CS scar

CS scar distance to internal os

 In the sagittal plane record distance between the caesarean section scar and the internal cervical os

CS scar distance to internal os

NHS Foundation Trust

Assessment of CS scar niche

Sagittal plane

Transverse plane

University College London Hospitals MHS

NHS Foundation Trust

Niche measurements

- Length
- **Depth**
- RMT (Residual myometrial thickness)
- **AMT (Adjacent** myometrial thickness)

Transverse plane

Width

Banerjee et al. 2022 Jordans et al 2019. Naji et al 2012.

Large niche

Results

Reproducibility study: FDCS scar position relative to internal cervical os

- 55 women real-time 2D image acquisition and caliper placement
- 2/55 (3.6%) disagreement between operators on scar visibility

Bland-Altman plots

Real-time 2D images					
<u>Intraobserver</u>			<u>Interobserver</u>		
FDCS scar niche	Mean Difference	95% limits of	Mean Difference	95% limits of	
measurements	(mm)	agreement	(mm)	agreement	
Length (mm)	-0.37	± 2.00	-0.12	±3.59	
Depth (mm)	-0.48	± 1.90	-0.70	±3.96	
Width (mm)	-1.09	± 1.84	0.36	± 5.78	

Banerjee et al. 2022 UOG

Prospective Study - Results

- Overall SPTB rate was 4.1% (10/243)
- CL ≤ 25mm in 12.8% (31/243) of women
- FDCS scar visualised in 220/243 (90.5%)
 women

- CS scar not visualised no spontaneous preterm birth
- Imaging analysis performed on 220 women

Relationship of CS scar location and spontaneous preterm birth

CS scar position

	Co scar position	SFID		
		No	Yes	aOR 6.87 (1.34-58)
	< 5 mm above or below internal os	68	8	P = 0.035
\supset	≥ 5mm	142	2	Sensitivity 80% Specificity 68%

CDTD

Relationship of CS scar location with shortening cervical length

CS scar position	CL <	= 25 mm	
	No	Yes	OD 47 27 (5 52
In cervix or < 5mm above internal os	72	26	aOR 17.27 (5.52-77.4) P <= 0.0001
≥ 5mm above internal os	118	4	Sensitivity 87% Specificity 62%

History (n=4) or ultrasound (n=19) indicated cerclage was performed in 23/243 (9.5%) women

- 2/23 (8.7%) women delivered preterm

23+5 following US indicated cerclage at 18 weeks

33+6 following US indicated cerclage at 20 weeks

Case 1 – HP

34 yrs

South-east asian, BMI 21.6, Non-smoker, spon. conception

PMHx: nil

Obs Hx:

G3 P1 (x1 MTOP)

1st pregnancy – 38+3 spon labour - FDCS with no reported complications

- no attempt at instrumental delivery
- 2nd Pregnancy booked at UCLH
- USU 11+3 Normal scan. CL 26.4mm. NIPT Iow risk (done privately)

PTB surveillance in subsequent pregnancy

- PTBC 15+2 CS scar defect noted 14mm below internal cervical os. Cx anterior lip was tethered and hitched up anteriorly. CL 33.1mm.
- **PTBC** 18+2 CL 29mm.
- USU 20+2 CL 34mm.

University College London Hospitals Miss

PTB surveillance in subsequent pregnancy

22 weeks

NHS Foundation Trust

PTBC 22+2 - Dynamic Cx . CL 10 – 31mm. fFN 18ng/mL. Started on progesterone.

PTBC 23+2 - Dynamic Cx. CL 17mm on left, 6mm on right (site of scar defect). Recruited to CRAFT RCT – conservative management.

PTBC 26+2 - Dynamic Cx. CL 19mm on left, 6mm on right. fFN 211ng/mL. Urine culture - E.Coli.

PTBC 26+2 - Dynamic Cx. CL 17mm on left, 6mm on right. fFN 64ng/mL.

PTBC 29+2 & 32+2 - Dynamic Cx. CL 6-18mm (stable). Discharged from PTBC.

SVD - 38+1

Case - GB

38yrs

White British, BMI 20.8, Non-smoker, spon. conception

PMHx: nil

Obs Hx:

G2P1

1st pregnancy- Spon. labour. 40+3. Undiagnosed Breech. EmCS at full dilatation. BW 3.29Kg. No reported complications.

PTB surveillance in subsequent pregnancy

USU 12+5 – Normal nuchal scan and low risk CST **PTBC** 13 - 18 weeks - Cx 28 - 31 mm. CS scar at os.

16 weeks

PTB surveillance in subsequent pregnancy

- USU 20 weeks Cx 13mm, funnelling noted.
 Started on progesterone 200mg od.
 - 20+2 weeks Macdonald Cerclage placed as very short cervix
- PTBC 22 weeks CL 23mm
- PTBC 24 weeks CL 24mm. fFN 10ng/mL.
 Discharged from PTBC.

Case- ME

38yrs

White British, BMI 20, Non smoker, spon. conception

PMHx: nil

Obs Hx:

G4 P2 +1(early misc)

1st Preg – Spon labour at 41+5, OP position manual rotation attempted. Fetal Distress → FDCS. Extension to left uterine angle.

2nd preg – 23+4 presented with 2-3 days of increased discharge. No pain. Noted to have bulging membranes – Cx 2 cm dilated. Underwent rescue cerclage and 2 days later PPROM → SVD (NND)

3rd preg – Booked at UCLH

PTBC 12+5 - Normal nuchal scan. CST low risk. Cx 32mm. CS scar 13mm below internal os.

PTBC 13+5 – Shirodkar cerclage

Reviewed in PTB clinic until 27 weeks – CL remained stable around 32-34mm

Del – 39 weeks EICS

University College London Hospitals WHS

NHS Foundation Trust

Early preg

12 weeks

Post cerclage

Case - SL

- 34 yrs
- White British, BMI 23.4, Non smoker, spon. conception

PMHx: nil

Obs Hx:

 G2P1- IOL for PIH. 40+5 weeks. Fully dilated and pushing for an hour, but no descent. In theatre had failed forceps, 2 pulls. BW -3.52kg.

NHS Foundation Trust

16+2 weeks

3D – Imaging

CS scar just above cervix

CS scar above cervix

CS scars

University College London Hospitals WHS

NHS Foundation Trust

Multi-parameters models of absolute scar distance from internal cervical os and prediction of SPTB

Parameters	AUC (95% CI)	Sensitivity (95% CI) for 75% Specificity
1. Scar visualisation	0.52 (0.36-0.69)	0.2 (0-0.5)
2. Scar distance from os	0.73 (0.57-0.89)	0.6 (0.3-0.9)
3. Scar distance and niche parameters	0.68 (0.46-0.90)	0.5 (0.2-0.8)
4. + cervical length	0.69 (0.52-0.87)	0.5 (0.1-0.8)
5. + previous FDCS parameters	0.71 (0.54-0.89)	0.5 (0.2-0.8)
6. + maternal history parameters	0.67 (0.49-0.85)	0.5 (0.20-0.8)

Multiparameter models of CS scar distance relative to internal cervical os and prediction of short CL

Parameters	AUC (95% CI)	Sensitivity (95% CI) for 75% Specificity
1. Scar visualisation	0.59 (0.45- 0.68)	0.31 (0.20-0.44)
2. Scar location	0.79 (0.71- 0.87)	0.73 (0.50-0.93)
3. Scar distance and niche parameters	0.81 (0.73- 0.89)	0.73 (0.57-0.90)
4. + previous FDCS parameters	0.78 (0.69- 0.87)	0.70 (0.47-0.87)
5. + maternal history parameters	0.75 (0.64- 0.86)	0.67 (0.50-0.83)

Conclusion

- Measuring the CS scar is feasible with CS scar to internal cervical os distance being the most reproducible
- CS scar located within the cervix or <5mm above the internal cervical os is associated with
 - spontaneous Preterm Birth
 - shortening of Cervical Length
- A cerclage in women with a short cervical length following FDCS has good outcomes
- Cervical length screening and CS scar assessment should be undertaken following late stage CS

Thank you

University College London Hospitals MISS

NHS Foundation Trust

Sonographic examination of uterine niche in non-pregnant women: a modified Delphi procedure

I. P. M. JORDANS¹, R. A. DE LEEUW¹, S. I. STEGWEE¹, N. N. AMSO², P. N. BARRI-SOLDEVILA³, T. VAN DEN BOSCH⁴, T. BOURNE⁵, H. A. M. BRÖLMANN¹, O. DONNEZ^{6,7}, M. DUEHOLM⁸, W. J. K. HEHENKAMP¹, N. JASTROW⁹, D. JURKOVIC¹⁰, R. MASHIACH¹¹, O. NAJI⁵, I. STREULI⁹, D. TIMMERMAN⁴, L. F. VAN DER VOET¹² and J. A. F. HUIRNE¹

(f) Distance between niche and vesicovaginal (VV) fold. Niche-VV fold distance should be measured from level of top of main niche (where residual myometrial thickness is smallest (dotted line)) to VV fold.

Ultrasound Obstet Gynecol 2012; 39: 252–259
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.10077

Standardized approach for imaging and measuring Cesarean section scars using ultrasonography

O. NAJI*, Y. ABDALLAH*, A. J. BIJ DE VAATE†, A. SMITH*, A. PEXSTERS‡, C. STALDER*, A. McINDOE*, S. GHAEM-MAGHAMI*, C. LEES§, H. A. M. BRÖLMANN†, J. A. F. HUIRNE†, D. TIMMERMAN‡ and T. BOURNE*‡

Ultrasound Obstet Gynecol 2012; 40: 549–556 Published online in Wiley Online Library (wileyonlinelibrary.com). **DOI:** 10.1002/uog.11132

Visibility and measurement of Cesarean section scars in pregnancy: a reproducibility study

O. NAJI*, A. DAEMEN†, A. SMITH*, Y. ABDALLAH*, S. SASO*, C. STALDER*, A. SAYASNEH*, A. McINDOE*, S. GHAEM-MAGHAMI‡, D. TIMMERMAN† and T. BOURNE*†‡

*Department of Obstetrics and Gynaecology, Queen Charlottes and Chelsea Hospital, London, UK; †Department of Development and Regeneration, University Hospitals KU Leuven, Leuven, Belgium; ‡Institute of Reproductive and Developmental Biology, Imperial College, London, UK

^{*}Obstetrics and Gynaecology Unit, Queen Charlottes and Chelsea Hospital, Imperial College London, London, UK; †Department of Obstetrics and Gynaecology, VU University Medical Center, Amsterdam, The Netherlands; ‡Department of Obstetrics and Gynaecology, University Hospitals Katholieke Universiteit Leuven, Belgium; §Division of Fetal-Maternal Medicine, Cambridge University Hospitals, Cambridge, UK